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Abstract—The influence of the pattern of the receive antenna on
measured Faraday rotation is examined in the context of passive
remote sensing of soil moisture and ocean salinity at L-band.
Faraday rotation is an important consideration for radiometers
on future missions in space, such as SMOS and Aquarius. Using
the radiometer on Aquarius as an example, it is shown that, while
I = Tv + Th is independent of Faraday rotation to first order,
it has rotation dependence when realistic antenna patterns are
included in the analysis. In addition, it is shown that using the third
Stokes parameter to measure the rotation angle can yield a result
that is biased by as much as 1◦ by purely geometrical issues that
are associated with the finite width of the main beam.

Index Terms—Antenna patterns, Faraday rotation, microwave
remote sensing, radiometer.

I. INTRODUCTION

FARADAY rotation is a change in the polarization vector
that occurs as electromagnetic waves propagate through

the ionosphere. The magnitude of the change varies as
1/(frequency)2 and is an important consideration for remote
sensing at the low-frequency end of the microwave spectrum.
For example, at L-band (1.4 GHz), where remote sensing of
soil moisture and sea surface salinity is performed, the rotation
of the polarization vector can range from a few degrees to more
than 15◦, depending on viewing angle and the solar cycle [1].
The corresponding change in apparent brightness temperature
can be several kelvin and is an important issue for missions
such as SMOS (Soil Moisture and Ocean Salinity) [2], [3] and
Aquarius [4], [5] which will be launched soon to measure soil
moisture and sea surface salinity at L-band.

Unfortunately, current models for the ionosphere are often
not sufficiently accurate to make corrections [6]. This is par-
ticularly true in the case of sea surface salinity, which requires
high accuracy and measurements over the oceans [4], [7] where
data on the ionosphere is sparse.

Among the strategies that are adopted to avoid the changes
due to Faraday rotation is to use the first Stokes parameter
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I = Tv + Th. In the ideal case when the antenna patterns
for the two polarizations are identical and there is no cross-
polarization coupling, I is independent of Faraday rotation. It is
also independent of other rotations such as errors in the antenna
polarization clocking angle (mechanical misalignment in the
plane perpendicular to antenna boresight that causes the axes
corresponding to H- and V-polarization to be rotated relative to
their desired position).

Another strategy is to measure the third Stokes parameter TU
[see (5) for a definition]. One can show that the ratio of TU to
the second Stokes parameter Q = Tv − Th is proportional to
the tangent of twice the angle of Faraday rotation. This was
recognized by Yueh, who described how TU and Q could be
used to measure the Faraday rotation [8]. The use of TU to
measure Faraday rotation has been described in the context of
SMOS [9], and an analysis of the impact of Faraday rotation on
the measurement of TU by Windsat has been described [10].

Both of these strategies work in the case of narrow beam
antennas with no cross-polarization coupling. However, at
L-band, antennas in space tend to have large footprints (e.g.,
100-km diameter for Aquarius) and small but not negligible
cross-polarization coupling. The purpose of this paper is to ex-
amine the performance of these two approaches when used with
antennas with realistic patterns. Of concern are the effect of
cross-polarization coupling, the mismatch of the patterns for the
two polarizations, and the effect of changes in the orientation of
the polarization vectors at the surface with respect to boresight
over the footprint of the antenna beam. For example, cross-
polarization coupling can introduce a dependence on Faraday
rotation in the sum I = Tv + Th and also introduce a bias in the
estimate of the angle of Faraday rotation that is obtained from Q
and TU. In the sections to follow, expressions for I, Q, and TU
are derived for a general antenna and examined in special cases.
Then, to get realistic estimates of the magnitude of the effects to
be expected in the general case, the patterns of the antennas for
the Aquarius radiometer are used to generate numerical results.

II. ANTENNA TEMPERATURE: GENERAL CASE

Consider a dual-polarized antenna with its two polarization
ports v and h arranged, so that at boresight, the directions
correspond to the conventional definitions at the surface, i.e.,

h = (k × n)/|k × n|
v =h × k (1)
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where n is a vector normal to the surface, and k is the direction
of propagation from the surface toward the antenna. Let the
antenna “voltage” pattern at each port be

Gh = ghhε2 + ghvε1

Gv = gvvε1 + gvhε2 (2)

where gij are complex, and εi are unit vectors defined by
Ludwig [11] to indicate the directions of copolarization and
cross polarization. Assume a local coordinate system at the
antenna with unit vectors (x, y, z), and let the z-axis be along
the boresight direction (pointing to the surface) and let the
x-axis be aligned with the direction of vertical polarization v
at the surface. Then, one has [11]

ε1 =
[
1 + cos2 ϕ(cos θ − 1)

]
x

+ (cos θ − 1) sin ϕ cos ϕy − sin θ cos ϕz

ε2 = (cos θ − 1) sin ϕ cos ϕx

+
[
1 + sin2 ϕ(cos θ − 1)

]
y − sin θ sin ϕz. (3)

The antenna output, i.e., antenna temperature TA, can be
written in the form [12]

TA =
∫

G(Ω)R(Ω)TB(Ω) dΩ (4)

where TB is the “modified” Stokes vector, in units of brightness
temperature, evaluated at the surface

TB =




Tv
Th
T3
T4


 (5)

where T3 = TU = 2αRe〈Eh∗Ev〉, and T4 = TV =
2αIm〈Eh∗Ev〉. In these expressions, Ev and Eh are the electric
fields of vertical and horizontal polarizations, respectively;
the coefficient of proportionality is α = λ2/(ηk), where
η =

√
µ/ε is the intrinsic impedance of the medium, k is

Boltzmann’s constant, and 〈〉 indicates the expected value.
In (4), R is a “rotation” matrix given by

R =




cos2 ϕc sin2 ϕc 0.5 sin 2ϕc 0
sin2 ϕc cos2 ϕc −0.5 sin 2ϕc 0
sin 2ϕc −sin 2ϕc −cos 2ϕc 0

0 0 0 −1


 (6)

and G in (4) is an antenna pattern matrix given by (7), shown at
the bottom of the page.

The matrix in (7) appears in scattering theory where the
parameters gij are replaced by scattering coefficients, and it is
commonly called the “Stokes matrix” [13], [14].

In (6), the angle ϕc = ϕ + ΦF , where ΦF is the Faraday
rotation angle (Appendix B-I) and ϕ is a geometry-dependent
rotation. The latter occurs because the polarization vectors that
are defined on the surface [h and v in (1)] are aligned with the
polarization vectors of the antenna (3) only at boresight. Along
other rays from the surface to the antenna, the polarization
vectors at the surface are rotated relative to the vectors that
were defined in (3) (see Appendix B-II and also [15]). Although
not considered here, it is also possible to have a rotation
about boresight of the antenna polarization vectors themselves
relative to the desired orientation (e.g., a misalignment of
the polarization vectors due to mechanical error). This would
appear as a constant offset ϕ0 that would be included in ϕc.

III. SPECIAL CASES

The matrix operations that result from substituting (5)–(7)
into the integrand of (4) are straightforward, but the expres-
sions that result are rather long. The general expressions are
given in Appendix A, and they will be used for the numerical
computations to be discussed in the following (Section IV).
However, in order to gain insight, it is convenient to first
look at special cases. In the following discussion, I = Tv + Th,
Q = Tv − Th, and T3 = 2αRe〈Eh∗Ev〉. Parameters without
primes are measured at the surface. Parameters with primes
(i.e., I′, Q′, and T3′) have the same definition but are measured
at the sensor after propagation through the ionosphere and
after being weighted by the antenna pattern (7) but before
integration. That is, they are the result of the matrix product
G(Ω)R(Ω)TB(Ω) in (4).

A. Ideal Antenna Patterns

The general expressions simplify greatly if one assumes that
the antenna patterns for the two polarizations are identical
and that there is no cross-polarization coupling. In particular,
assume ghh = gvv = G, and ghv = gvh = 0. In this case, one
obtains the conventional results, and the first Stokes parameter
I′ = Tv′ + Th′ is independent of Faraday rotation. Combining
the first two rows in the integrand in (4), one obtains

I′ = G2I (8a)

Q′ = G2 cos(2ϕc)Q + G2 sin(2ϕc)T3 (8b)

T3′ = G2 sin(2ϕc)Q − G2 cos(2ϕc)T3 (8c)

where it has been assumed that T4 = 0 at the surface, but
T3 
= 0 and the primes on the quantities on the left are a
reminder that the integration in (4) has not been done.

G =



|gvv|2 |gvh|2 Re (gvvg∗

vh) −Im (gvvg∗
vh)

|ghv|2 |ghh|2 Re (g∗
hhghv) −Im (g∗hhghv)

2Re (gvvg∗hv) 2Re (g∗hhgvh) Re (gvvg∗hh + gvhg∗
hv) −Im (gvvg∗

hh − gvhg∗hv)
2Im (gvvg∗hv) 2Im (g∗hhgvh) Im (gvvg∗hh + gvhg∗hv) Re (gvvg∗

hh − gvhg∗
hv)


 (7)




